Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sports Med ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424374

RESUMEN

BACKGROUND: Historically, golf does not have a strong tradition of fitness testing and physical training. However, in recent years, both players and practitioners have started to recognise the value of a fitter and healthier body, owing to its potential positive impacts on performance, namely clubhead speed (CHS). OBJECTIVE: The aim of this meta-analysis was to examine the associations between CHS (as measured using a driver) and a variety of physical characteristics. METHODS: A systematic literature search with meta-analysis was conducted using Medline, SPORTDiscus, CINAHL and PubMed databases. Inclusion criteria required studies to have (1) determined the association between physical characteristics assessed in at least one physical test and CHS, (2) included golfers of any skill level but they had to be free from injury and (3) been peer-reviewed and published in the English language. Methodological quality was assessed using a modified version of the Downs and Black Quality Index tool and heterogeneity assessed via the Q statistic and I2. To provide summary effects for each of the physical characteristics and their associations with CHS, a random effects model was used where z-transformed r values (i.e. zr) were computed to enable effect size pooling within the meta-analysis. RESULTS: Of the 3039 studies initially identified, 20 were included in the final analysis. CHS was significantly associated with lower body strength (zr = 0.47 [95% confidence intervals {CI} 0.24-0.69]), upper body strength (zr = 0.48 [95% CI 0.28-0.68]), jump displacement (zr = 0.53 [95% CI 0.28-0.78]), jump impulse (zr = 0.82 [95% CI 0.63-1.02]), jumping peak power (zr = 0.66 [95% CI 0.53-0.79]), upper body explosive strength (zr = 0.67 [95% CI 0.53-0.80]), anthropometry (zr = 0.43 [95% CI 0.29-0.58]) and muscle capacity (zr = 0.17 [95% CI 0.04-0.31]), but not flexibility (zr = - 0.04 [95% CI - 0.33 to 0.26]) or balance (zr = - 0.06 [95% CI - 0.46 to 0.34]). CONCLUSIONS: The findings from this meta-analysis highlight a range of physical characteristics are associated with CHS. Whilst significant associations ranged from trivial to large, noteworthy information is that jump impulse produced the strongest association, upper body explosive strength showed noticeably larger associations than upper body strength, and flexibility was not significant. These findings can be used to ensure practitioners prioritise appropriate fitness testing protocols for golfers.

2.
J Strength Cond Res ; 38(4): e174-e181, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38090982

RESUMEN

ABSTRACT: Brennan, A, Murray, A, Coughlan, D, Mountjoy, M, Wells, J, Ehlert, A, Xu, J, Broadie, M, Turner, A, and Bishop, C. Validity and reliability of the FlightScope Mevo+ launch monitor for assessing golf performance. J Strength Cond Res 38(4): e174-e181, 2024-The purpose of this study was to (a) assess the validity of the FlightScope Mevo+ against the TrackMan 4 and (b) determine the within-session reliability of both launch monitor systems when using a driver and a 6-iron. Twenty-nine youth golfers, with a minimum of 3 years of playing experience, volunteered for this study. All golfers completed 10 shots with a 6-iron and a driver, with 8 metrics concurrently monitored from both launch monitor systems in an indoor biomechanics laboratory. For both clubs, Pearson's r values ranged from small to near perfect ( r range = 0.254-0.985), with the strongest relationships evident for clubhead speed (CHS) and ball speed ( r ≥ 0.92). Bland-Altman plots showed almost perfect levels of agreement between devices for smash factor (mean bias ≤-0.016; 95% CI: -0.112, 0.079), whereas the poorest levels of agreement was for spin rate (mean bias ≤1,238; 95% CI: -2,628, 5,103). From a reliability standpoint, the TrackMan showed intraclass correlation coefficients (ICCs) ranging from moderate to excellent (ICC = 0.60-0.99) and coefficient of variation (CV) values ranged from good to poor (CV = 1.31-230.22%). For the Mevo+ device, ICC data ranged from poor to excellent (ICC = -0.22 to 0.99) and CV values ranged from good to poor (CV = 1.46-72.70%). Importantly, both devices showed similar trends, with the strongest reliability consistently evident for CHS, ball speed, carry distance, and smash factor. Finally, statistically significant differences ( p < 0.05) were evident between devices for spin rate (driver: d = 1.27; 6-iron: d = 0.90), launch angle (driver: d = 0.54), and attack angle (driver: d = -0.51). Collectively, these findings suggest that the FlightScope Mevo+ launch monitor is both valid and reliable when monitoring CHS, ball speed, carry distance, and smash factor. However, additional variables such as spin rate, launch angle, attack angle, and spin axis exhibit substantially greater variation compared with the TrackMan 4, suggesting that practitioners may wish to be cautious when providing golfers with feedback relating to these metrics.


Asunto(s)
Rendimiento Atlético , Golf , Adolescente , Humanos , Reproducibilidad de los Resultados , Fenómenos Biomecánicos , Correlación de Datos , Hierro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...